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Abstract: Twinning is a phenomenon complicating struc-
ture analysis of single crystals of standard as well as mod-
ulated structures. Jana2006 as a software for advanced 
structure analysis contains tools for recognition and 
refinement of twins including most complicated cases of 
modulated and magnetic structures. In order to efficiently 
use the tools of Jana2006 related to twinning, we explain 
the basic terminology and the underlying theory, espe-
cially the symmetry of the diffraction patterns affected by 
twinning. We present typical diffraction patterns of twins 
and show how twinning can be recognized or detected 
by various tools and described with twinning matrices. 
Data processing of twins and ways of how they can be 
imported to Jana2006 are also discussed. Two examples 
demonstrate the solution of typical twins: twinning by 
metric merohedry and twinning by reticular merohedry, 
followed by the third example demonstrating twinning in 
a commensurately modulated structure. The relationship 
between the dimensionality of the structure and twinning 
is discussed, too.
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Introduction
The phenomenon of twinning can occur in various 
samples of dissimilar origin. Many natural minerals are 
affected by twinning with macroscopic implications for 
their morphology and this is why a classification of twins 
was introduced into science a long time before Max von 
Laue’s discovery of X-ray diffraction [1, 2]. Diffraction 
theory latter proved that the diffraction pattern of a twin 
is composed of several superimposed diffraction patterns.

Twinning in the crystal can considerably affect the 
process of solution and refinement of the particular crystal 

structure. The occurrence of several independently dif-
fracting domains in a twinned sample can generally lead 
to considerable or even complete overlaps of diffraction 
spots. The more overlaps that are present in the diffraction 
pattern the more difficult it is to solve the crystal structure. 
On the other hand, as soon as some reasonable structure 
model is known, the structure finalization by subsequent 
refinements and difference Fourier syntheses is more or 
less routine work.

In many cases presence of twin domains in the 
sample can be influenced by the crystallization method 
used and conditions of the crystal growth such as tem-
perature, pressure, magnetic or electric field, etc. Very 
often, twinned and single crystal specimens are present 
within the same batch and careful sample selection may 
help to avoid troubles with twinning. Experienced crystal-
lographers can recognize promising samples in a mostly 
twinned batch by their habitus, often leading to selection 
of very small single crystals measurable only with micro-
focus sources. Thus, we have some chance to reduce or 
even eliminate twinning, but it is certainly not possible in 
every case.

Generally, the process of twin elimination becomes 
difficult for twins resulting both from sygnonic merohedry 
and metric merohedry (pseudo-merohedry with experi-
mentally negligible oblique) [3–5]. Practical issues further 
complicate the selection: with natural samples available 
in a very limited number of crystals we simply do not have 
enough trials, while with unstable samples the limiting 
factor is the time available for the selection. Finally, there 
is a special class of experiments investigating phase tran-
sitions in a crystal, especially the magnetic ones, where 
the lowering of symmetry leads naturally to the unavoid-
able presence of twin domains.

Let us consider that the sample is composed from 
n twin domains related by the twinning operations 
expressed by the 3 × 3 twinning matrices Ti (i = 1, … n). 
Without loss of generality we can define that the twin-
ning matrix for the first domain is a unit matrix and thus 
remaining twinning matrices relate each domain to the 
first domain. Thus the diffraction indices hi = (hi, ki, li) 
of the ith domain with respect to the first domain can be 
expressed as:

	 1i i=h h T � (1)
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The detected intensity from a twin is expressed as a sum 
of n contributions:
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where F is the structure factor, vi is the volume fraction of 
the ith twin domain and 2 is a square of the resulting struc-
ture factor related to the measured intensities. For practi-
cal reasons, the first domain should be the one with the 
largest vi because it has the strongest intensities.

The relatively simple equation (2) is valid only if the 
main and critical assumption for twinning is fulfilled: 
twin domains diffract independently and the diffracting 
domains are randomly distributed within the investigated 
sample. Then the probability that ith domain contributes 
to the combined intensity at any diffraction geometry 
is equal to vi. Violation of this basic assumption occurs, 
e.g. in case of large domains in a sample with not negligi-
ble absorption (see Figure 1). In such a case the effective 
volume fractions depend on diffraction indices, actual 
setting of the crystal for a selected diffraction spot, shape 
of the crystal and distribution of domains in the sample, 
and usually they cannot be evaluated, causing failure 
of structure analysis. Surprisingly, in spite of these very 
strong limitations the equation (2) describes the resulting 

intensities for the majority of twinned crystals reasonably 
well.

The equation (2) can also be used in cases when sys-
tematically absent reflections are combined (due to twin-
ning operations) with those fulfilling reflection conditions 
and also in cases when some of the products hTi lead to 
non-integer components (the twinning matrices are gen-
erally composed from both integers and real numbers). 
For the latter case we suppose that the structure factor for 
a non-integer diffraction vector is identically equal to zero.

The main aim of this paper is to explain and present 
how the twinning affects the various steps of the structure 
analysis and how demanding task twinning may repre-
sent. For this purpose, we shall divide twins into three 
types in a close analogy with the classification of Nespolo 
and Ferraris [5]. Each of these types (see Figure 2) requires 
a different way of handling diffraction patterns and choice 
of methods used for the structure solution:
Type I:	� Twins by sygnonic merohedry and metric mero-

hedry (i.e. Class I, IIA and IIB from [5]): The 
diffraction pattern is composed from diffrac-
tion spots having generally non-zero contribu-
tions from all n twin domains. Such diffraction 
pattern does not have split reflections and 
looks like from a regular (non-twinned) crystal. 
Twinning operations can be derived from the 
lattice and structure point group. The twinning 
matrices related to the lattice metrics are built 
from integers. Individual reflection overlaps 

Fig. 1: Example of a sample with not randomly distributed twin 
domains. Sample orientations (a) and (b) are such that the obtained 
diffractions are symmetry equivalent. Nevertheless, absorp-
tion effects can considerably reduce diffracted intensity from the 
obscured domain, resulting in different intensities uncorrectable 
with usual data reduction methods due to unknown geometry of the 
domains.

Fig. 2: Examples of three basic types of twins. Type I: two pseudo-
orthorhombic lattices of a monoclinic structure related by 180° 
rotation around a* give rise to the Type I twin diffraction pattern 
with orthorhombic diffraction symmetry. Type II: Reticular merohe-
dry: two domains of a monoclinic structure related by 180° rotation 
around a* give rise to a pseudo-orthorhombic reticular lattice – twin 
index = 2. Type III: Reticular pseudo-merohedry: two domains of a 
monoclinic structure related by 180° rotation around a* gives rise – 
twin index = 2.
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are completely determined by the twinning 
matrices.

Type II:	� Twins by reticular merohedry: The diffraction 
pattern is composed from diffraction spots 
having generally different number of contribu-
tions from twin domains depending on actual 
reflections. The twinning matrices are built 
from rational numbers and they allow predict-
ing all overlaps without any additional infor-
mation from experiment. There is always some 
sub-lattice allowing indexing of all diffraction 
spots from all domains, but some of these 
points can have systematically zero-contribu-
tion from twin domains.

Type III:	� Pseudo-merohedry with apparent oblique: 
Twinning matrices contain non-rational 
numbers. For prediction of overlaps we need to 
know not only the twinning matrices but also 
the actual setting of a measured reflection on 
the diffractometer.

Refinement of twinned structures has been done since the 
1980s. In 1982 it was already possible to refine modulated 
twins by REMOS of Yamamoto [6] who realized an impor-
tance of twinning for studies of phase-transitions. The 
first version of program Jana [7] from 1985, developed for 
the refinement of regular and modulated structures, was 
written on the basis of two older programs, LINUX77 and 
SDS, which already allowed refinement of twins by syg-
nonic and metric merohedry (Type I), dating refinement of 
twins to the beginning of the 1980s, too [8, 9]. Also the most 
widely used program for structure determination SHELX 
allows refinement of twinned structures [10, 11].

Nevertheless, despite the fact that almost everything 
about twinning was devised 30 or more years ago, we 
witnessed a boom of articles about twinning only in the 
last years. It seems that many older matters have been re-
discovered due to a boom of twinned structures measured 
by area detectors where twinning, especially of the Type 
II and III, can scarcely be overlooked. Also the quantity 
of measured structures grows significantly, increasing the 
probability of encountering all kinds of twinning even 
within the service crystallography. The diffractometer 
software like CrysAlis [12] or Apex [13] of the main pro-
ducers supports automatic detection of twins, which is of 
great importance for routine structure determinations.

While the overview paper by Parsons [14] makes 
very nice introduction to twinning, our article focuses 
on twin tools available in the Jana2006 program and it 
can be understood as a continuation of our paper [15] 
about the general features of Jana2006. With developing 

new procedures for structure analysis of regular, modu-
lated, composite and magnetic structures the twinning 
option has been considerably improved but till now no 
review paper reporting this option has been published. 
This article fills the gap and presents all procedures in 
Jana2006, which can be used for the study of twinned 
structures.

Data collection and reduction

Recognition of twins and data collection

The first question is how we can recognize that the crystal 
is affected by twinning, and how we can get a set of twin-
ning matrices for application of the equation (2) in the 
subsequent crystal structure analysis. In this section, we 
will focus on the cases where twinning can be recognized 
from the diffraction pattern. In many cases, however, the 
twinning need not be recognized directly either due to 
complete overlaps of diffractions or week intensities of 
minor domains. Then, at any stage of the structure anal-
ysis, when some problems occur, it is worthwhile to use 
some testing tools for finding possible twinning. Namely 
the program Geminography [16] can predict most prob-
able twin laws just on the basis of the known unit cell and 
assumed point symmetry of the structure. Another pos-
sibility is to recognize an overlooked twin problem from 
a refined structure model, using, e.g. TwinRotMat [17] or 
ROTAX [18], which are based on comparison of calculated 
and observed structure factors. Twinning can also be 
detected by statistical methods – see the section “Type I: 
twinning matrices from the cosets decomposition”.

Type I: twinning matrices from the cosets decomposition

Twins of the diffraction Type I yield a diffraction pattern 
which looks the same as for a regular crystal (see Figure 
2), and data collection process for such twin is the same 
as for a regular non-twinned structure. There are some 
special cases of higher symmetrical lattices (tetragonal, 
trigonal, hexagonal and cubic) for which some specific 
extinctions can indirectly prove that twinning is present. 
As an example see Figure  3, in which the orthorhombic 
extinctions for (h,k,0) h = 2n + 1 induce non-standard 
extinctions in a tetragonal lattice, h = 2n + 1 ∧ k = 2n + 1, by 
the twinning operation 2x − y.

Nevertheless, in most cases the Type I twinning 
cannot be recognized visually from the diffraction pattern. 
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We can then distinguish two cases based on the equality 
or non-equality of the twin volume fractions.
1.	 If the twin volume fractions are equal, the diffraction 

pattern simulates exactly a higher Laue symmetry 
with perfect Rint value. In such a case, the twin is 
recognized indirectly due to difficulties with structure 
solution or refinement.

2.	 For unequal twin volume fractions, the higher 
symmetry is fulfilled only approximately (e.g. with 
Rint 0.1–0.2), which alerts us that twinning would be 
possible.

In both cases, in order to find a better solution or better 
merging R value, we can try to lower symmetry from the 
holohedral point group to a sub-group by using a group–
subgroup relationship. The twinning matrices can be 
deduced from the relationship between the point symme-
try H of the lattice and the point symmetry of the crystal 
structure G. The twin operations can be selected as arbi-
trary chosen representatives from each coset [19]. Again, 
without loss of generality we can select the first twin-
ning operation as an identity operator. Correct twinning 
matrices are recognized indirectly from the fact that the 
structure model refinement converges with a reasonably 
low R value or that geometry of the structure model has 
improved, e.g. incorrect distances or disorder.

Other ways to indicate possible Type I twinning are 
based on statistical methods [20–23]. While the first one 
can be used even for equal volume fractions, the second 
and third ones cannot. These methods were tested on 
a group of inorganic crystal structures by Kahlenberg 
[24], who concluded that “they represent useful tools 
in the early stages of a structure analysis and should be 
applied routinely in the preliminary stage of a structure 
determination whenever a twinning by merohedry is 
possible.”

Type II and III: twinning matrices from orientation 
matrices

For twins of diffraction Type II and III the determination of 
the twinning matrix is very straightforward because data 
collections are made almost exclusively on diffractom-
eters equipped by area detectors. The experiment plan-
ning is usually done based on an orientation matrix of one 
domain (Type III) or an orientation matrix of the common 
supercell (Type II). Such a matrix is usually determined 
automatically followed by some alerting marks, like 
double points in the single area detector frames indicat-
ing unreasonably large unit cell parameters (both Type II 
and III) or low percentage of the indexed reflections (Type 
III). After making the full data collection, a twin can be 
immediately discovered visually either in a projection of 
peak positions or in a reconstructions of different sec-
tions throughout the reciprocal space. Here we show two 
examples of how twinning can be recognized from the dif-
fraction pattern. The examples are based on the Rigaku 
Oxford diffraction equipment but there should be no dif-
ference with other instruments.

Figure 4 shows the simplest case of the Type II twin-
ning found in a structure of an iodine salt of agomelatine 
[25]. The structure of this salt is triclinic and the sample is 
twinned by 180° rotation around b:

1 0 0
0.5005 1 0

0 0 1

 −
 =  
 − 

T

Due to special metrics of this triclinic unit cell the 
diffraction spots can also be indexed in a common four-
fold monoclinic supercell, which is preferred by the auto-
matic indexing procedure of CrysAlis. Single diffraction 
frames contain some alerting features like double-points 

Fig. 3: Non-standard extinction rules indicating the Type I twinning by the four-fold axis along c in a pseudo-tetragonal lattice of an 
orthorhombic structure Pmma. (a), (b) The reciprocal plane (hk0) for the first and second domain shows the reflection condition h = 2n. (c) 
The combined diffraction pattern of a twin with equal volume fractions shows that reflections (hk0) are systematically extinct only if both h 
and k indices are odd. The origin is indicated with a blue cross.
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meaning either twinning or very large unit cell, and rows 
of diffractions with alternating strong and weak intensity, 
which could occur due to the co-existence of stronger 
and weaker twin domains. However, the most striking is 

an unrealistically large unit cell. Its incorrectness can be 
discovered after taking a closer look into the diffraction 
pattern. It contains many systematical absences, caused 
by twinning of Type II, and also shows a typical alterna-
tion of the dense and sparse rows of spots, but not neces-
sarily in a view along the three basic reciprocal axes. The 
triclinic unit cell and the corresponding twining matrix 
can be found automatically in CrysAlis when we constrain 
the maximal dimension of the unit cell to 30 Å. How such 
twinning could be discovered with Jana2006 using a data 
set processed in the monoclinic supercell is shown in the 
section Examples.

Figure  5 shows a typical Type III twin [26]. Experi-
mental frames exhibit very close spots unequivocally 
indicating twinning because their distances correspond to 
extremely large unit cell parameters in the direct space. 
The automatic indexing procedure can index only about 
60% of reflections and projections of peak positions along 
reciprocal axes clearly show that another rotated unit cell 
would describe the unindexed reflections. The twinning 
matrix automatically determined by CrysAlis corresponds 
to the 180° rotation around c:

1 0 0
0 1 0

0.733 0 1

 −
 = − 
 − 

T

With the help of these tools we can determine and 
refine orientation matrices of twin domains. Once we 
know the orientation matrices of each domain we can cal-
culate twinning matrices:

	 1
1( )Ti i

−=T U U � (4)

where U1 and Ui are orientation matrices of the first and ith 
twin domains, respectively. The symbol T represents the 
transpose matrix and it is used here as in the commonly 
accepted definition of the orientation matrix diffraction 
vectors h are used in a non-standard way as a column 3 × 1.

Manual determination of the twin component orienta-
tion matrices is laborious but straightforward: one has to 
recognize and discard spots of the other domains, index 
the remaining reflections, and repeat the process for all 
domains. Because of this simplicity, the most used data 
collection programs allow automatic detection of twin 
domains: CrysAlis [12] offers this possibility in its common 
user interface while in Apex [13] users achieve similar 
results by combining CELL NOW, SAINT and TWINABS. 
Both programs create a crude hklf4 file with reflections 
suitable for solution of the phase problem, and hklf5 file 
for refinement of the structure model. Also, both pro-
grams allow to index twins in a manual graphical mode 

Fig. 4: Example of a Type II twin determined from the diffraction 
pattern [25]. T and M stand for the triclinic and monoclinic system, 
respectively. (a) A part of the single CCD frame with double-points 
and with rows of alternating strong and weak reflections indicating 
possible twinning; (b, c, d) peak positions from peak hunting pro-
jected along aM*, bM* and cM* of the monoclinic four-fold supercell 
as found from the automatic indexing procedure of CrysAlis. Unit cell 
parameters: aM = 18.7211(5) Å, bM = 14.6044(4) Å, cM = 49.4784(9) Å, 
αM = 89.9447(18)°, βM = 96.8701(18)°, γM = 90.009(2)°, VM = 13430.8(5) 
Å3; (e) peak positions from peak hunting projected along cT* ≡ cM*. 
The triclinic unit cell was found by the automatic indexing procedure 
of CrysAlis when a user constraint on the unit cell size was applied. 
The cT* is the common axis of both the first (blue) and second (red) 
twin domains. Unit cell parameters: aT = 13.2071(3) Å, bT = 14.6069(4) 
Å, cT = 18.7205(5) Å, αT = 89.997(2)°, βT = 75.953(2)°, γT = 73.882(2)°, 
VT = 3356.94(15) Å3; (f) peaks from (e) overlaid with the four-fold 
supercell oriented along cT* of the triclinic unit cell. Origin is indi-
cated with a blue cross.
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using the displayed peak positions. Automatic twin recog-
nition works the best for the Type III twins. For the Type 
II twins it is less reliable, because the possibility to index 

all reflections with a common supercell may confuse the 
automatic procedure. Here, the visual inspection and 
manual indexing is often necessary.

While twin recognitions are relatively easy for Type II 
and III twins, the data input to the structure determina-
tion software is a more complicated topic because there 
are several options available, each of them having their 
pros and cons.
1.	 One approach is to make a separate data process-

ing for each twin domain and import to the struc-
ture determination software reflection files of these 
domains and corresponding twinning matrices. The 
twinning matrix is then used by the structure deter-
mination software to detect overlaps of diffraction 
spots from different twin domains. This approach 
works very reliably for the Type II where the twinning 
matrix predicts the overlaps unequivocally, while it is 
less reliable for the Type III where additional experi-
mental information would be necessary for absolutely 
correct overlap prediction. However, for many cases 
of the Type III twins the overlaps prediction works 
sufficiently well.

2.	 A modified approach is preferred for cases with a 
dominating first domain. For such samples diffrac-
tion intensities of additional domains are consider-
ably weaker and their introduction to the structure 
determination may considerably increase an R value. 
Therefore in this modified approach we import only 
a reflection file of the first (strong) twin domain and 
twinning matrices without further data for detection 
of overlaps.

3.	 For the Type II data processing can be also done using 
the common reciprocal sub-lattice (supercell) to inte-
grate all diffraction spots in one run. Then we import 
only one data set, the twinning matrices and a trans-
formation matrix from the supercell to the actual unit 
cell of one twin domain.

4.	 In order to overcome the difficulties with overlaps 
prediction for the Type III, the so-called hklf5 for-
mat introduced by Sheldrick [11] has been widely 
accepted. In this file the overlaps are defined during 
the data reduction process when the necessary geo-
metric information is available. The structure deter-
mination software only needs the hklf5 file but not 
twinning matrices, because they are not needed for 
predicting the overlaps. The hklf5 format is the proper 
way to treat the Type III twins with considerable 
overlaps. However, in practice, its usability strongly 
depends on the way how it is implemented in the dif-
fractometer software and which user parameters were 
applied during the process of the overlap recognition. 

Fig. 5: Example of a Type III twin determined from the diffraction 
pattern [17]. (a) A single CCD frame with double-points indicating 
twinning or split sample; (b, c, d) peak positions from peak hunting 
projected along a*, b* and c* of the monoclinic unit cell found from 
the automatic indexing procedure of CrysAlis. Unit cell parameters: 
a = 14.5961(12) Å, b = 9.8524(5) Å, c = 16.0470(10) Å, α = 90.001(4)°, 
β = 113.830(7)°, γ = 90.040(5)°, V = 2110.9(2) Å3; (e) the same view 
like in (c) with two monoclinic unit cells as found from the automatic 
twin indexing procedure of CrysAlis. The b* is the common axis of 
both the first (blue) and second (red) twin domains; (f) part of the 
experimental frame from (a) with indicated peaks of the first (red) 
and second (green) domain (square, cross and rotated square indi-
cate incoming, diffracting and leaving spots). The origin is indicated 
with a blue cross.
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Thus, the old way of using separately processed twin 
domains and twinning matrices is still worth of trying 
in cases when refinement based on the hklf5 file pro-
vides unsatisfactory results.

Symmetry of the diffraction pattern of twins

Overlaps of reflections from different twin-domains 
change the symmetry of the diffraction pattern consider-
ably. Thus the lattice point group symmetry G (the holohe-
dral point group) may differ from the structure point group 
symmetry. Let us start with the twin diffraction Type I and 
say that the set of symmetry operations of the structure 
point group is H = {S1 = E, S2, …, Sm}. Then applying any 
symmetry operation to the observed intensities (2) gives:

	

2 2

1
( ) ( )

n

j i j i
i
v F

=

= ∑hS hS TF
�

(5)

The fact that the volume fractions come from the experi-
mental data does not allow making any assumption about 
their particular values. This leads to the conclusion that 
the symmetry element Sj is present in the diffraction 
pattern of the twinned sample only if the equation (5) 
holds for each twinning operation [27]:
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( ) ( )
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This means that for each twinning operation Ti there exists 
a symmetry operation Sk that fulfills the equation. In other 

words, the symmetry of the diffraction pattern of the 
twinned sample will follow the structure symmetry only 
if the H is a normal subgroup of G. The minimal symmetry 
of the diffraction pattern is then H′ ⊂ H ⊂ G which is the 
maximal subgroup of H being normal with respect to the 
group G. Note that the subgroup H of order 2 in G is always 
normal and therefore, for most common twinned struc-
tures the minimal symmetry of the diffraction pattern is G.

On the other hand, in the idealized case v1 = v2 = … = vn 
any permutation of individual terms in (5) is allowed 
without changing 2(h), thus the maximal symmetry of 
the diffraction pattern is the lattice point group G. As for 
most of the twins generated by phase transitions the twin 
domains are almost equally occupied, symmetry of the 
diffraction pattern does not allow for making any defini-
tive conclusions about the crystal structure symmetry.

For the twin diffraction Type II the number of over-
lapped domains can be different for different reflections 
and then the equation (6) is required to be used selectively. 
Even more complicated situations arise for the diffraction 
Type III, where we have to take into account not only dif-
fraction indices and twinning matrices but also informa-
tion about actual overlaps as presented in the hklf5 file.

Figure  6 demonstrates consequences of these rules 
for analysis of a reticular Type I twin (an unpublished 
data set) with a tetragonal unit cell. One of the screens 
of the Jana2006 wizard shows merging R values (Rint) for 
Laue symmetries possible for the given lattice. In case of 
a Laue symmetry lower than the symmetry of the lattice 
(here 4/mmm), the user can choose whether the twinning 

Fig. 6: A screen of the Jana2006 symmetry wizard with merging R values (Rint) for Laue symmetries possible for the tetragonal lattice of a 
Type I reticular twin (an unpublished data set) with unequal twin fractions. In the merging procedure, the twinning operation following from 
the symmetry lowering is either ignored (a) or taken into the account (b).
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operations following from the symmetry lowering should 
be considered in the merging procedure. The screen on 
the left (Figure 6a) shows the situation without consider-
ing the twinning operations. The “almost good” Rint for 
the tetragonal symmetry signals possible twinning, and 
the very good Rint for the triclinic symmetry suggests that 
the structure could be an eight-fold triclinic twin. On the 
other hand, when we consider the twinning, some sym-
metry operations cannot be used for the merging because 
2x/mx is not the normal subgroup of 4/mmm, and the tools 
(Figure 6b) reveals the structure could be a monoclinic 
four-fold twin. We can immediately suppose that such 
a twin would have unequal twin fractions, otherwise 
the differences in Laue symmetry would not be present 
and the diffraction pattern would mimic a tetragonal 
symmetry.

For the twin diffraction Type II the number of over-
lapped domains can be different for different reflections, 
and the equation (6) must be used selectively. The situa-
tion is even more complicated for the diffraction Type III, 
where we have to take into account not only diffraction 
indices and twinning matrices but also information about 
actual overlaps as presented in the hklf5 file. On the other 
hand, for symmetry merging of the Type III twin the situa-
tion demonstrated in Figure 6 cannot occur because there 
is no common supercell of a higher symmetry.

Solution and refinement of twinned 
structures
Structure solution of a twinned crystal can be a difficult 
task, especially for the diffraction Type I, where the con-
tributions of the volume fractions to the diffraction spots 
are equal or almost equal and cannot therefore be reliably 
detected from the diffraction pattern. The crystal sym-
metry used at the first steps of the structure solution is 
usually based on the holohedral point group G. Omitted 
twinning is manifested by problems during the structure 
solution, because solution methods like direct methods 
do not account for twinning. Recently developed charge 
flipping methods [28] give a better chance for solution 
but these methods can be biased by twinning as well. 
The structure model resulting from solution, based on 
data from a twinned crystal, may yield a partial structure 
model or a structure model with some strange disorder, 
which cannot be properly described by the model without 
taking account of twinning. Therefore, twinning for the 
diffraction Type I is introduced and tested in cases when a 
structure solution is not satisfactory.

In the case that the structure contains one or a small 
number of heavy atoms a generalized heavy atoms method 
can be used. The Patterson map, as follows from the equa-
tion (2), is a weighted sum of n individual Patterson maps 
from each twin domain. In some specific cases it allows 
both recognizing twins and finding positions of heavy 
atoms from Patterson peaks [9].

In cases when the volume fractions of the Type I twin 
are not equal a “de-twinning procedure” can be used. Thus 
for the case n = 2 the following formula can be applied:
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2

2 1 2
[(1 ) ( ) ( )]( )

(1 2 )
v vv v F

v
− −= = = ⇒ =

−
h hTT E T T h F F

�
(7)

However, this formula can be used only if the volume 
fraction v is already known, or if it can be estimated as 
proposed by Murray-Rust [29]. Moreover, this method is 
applicable only if the volume fraction is significantly dif-
ferent from the ½. For the twins induced by phase transi-
tions, where the volume fractions are usually close to ½, 
we can start the refinement from the structural model of 
the high symmetry.

For diffraction Type II and III twinning is introduced 
based on the knowledge of the diffraction pattern, which 
reveals the twinning operation. Structure solution can be 
based on separated reflections from the first domain and 
the remaining ones treated by the de-twinning method 
according the equation (7). In the case of the equal volume 
fractions we can just divide them by the twin multiplic-
ity. Then we can try traditional methods of structure solu-
tion. For the Type III, partial overlaps of diffraction spots 
complicate the situation even more. The data reduction 
software often creates, along with the hklf5 file, also the 
hklf4 file, which contains de-convoluted and de-twinned 
intensities (based on the estimated volume fractions) that 
can be used for the structure solution. Like with the hklf5 
format, using hklf4 is the proper way how to solve struc-
tures of twins, and again its usefulness depends on the 
how the particular diffractometer software analyses par-
tially overlapped reflections. In the case of troubles there 
is always the possibility to try the structure solution from 
data of one twin domain. We can conclude that for twins of 
the Type II and III the structure solution also yields only a 
partial structure model but, unlike the Type I, we know the 
twinning matrix beforehand and we can easily complete 
the structure from the refinement and Fourier syntheses.

Once we have the starting model for the refinement, 
we can continue with a more or less straightforward 
process of completion and refinement of the structure. In 
the refinement the only new parameters are (n – 1) volume 
fractions. For completion of the structure the Fourier 
and difference Fourier maps can be used as for regular 
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structures, but with properly corrected amplitudes of 
observed structure factors (intensities):
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where the index obs and calc stand for observed and cal-
culated values, respectively.

While the first method cumulates differences between 
observed and calculated overall intensities into the term 
describing the intensity of the first domain, the second 
method distributes these differences into all domains 

according to the ratio 
2
calc
2
calc

( )
.

( )
F h

hF

Generalization of twin approach to 
modulated and multiphase systems
Modulated structures can be affected by twinning as 
well. The equation (2) is still valid there, but now indices 
are described as a row of three generally non-rational 
numbers H:

	 m= +H h q � (9)

where q is a modulation vector. In the following part we 
shall concentrate only on (3 + 1)d cases, but a generaliza-
tion to higher dimensional modulation would be straight-
forward. For predicting overlaps of diffraction spots we 
can use exactly the same procedure as for non-modu-
lated structures, because the twinning matrices trans-
form indices of main reflections as well as of satellites. A 
crucial point for a correct description of the modulated 
structure is to find the smallest number of modulation 
vectors which can fully index the diffraction pattern. 
The presence of twinning by merohedry can generate 
additional satellite reflections which can mimic a higher-
dimensional case with two or more q-vectors. The crucial 
point for distinguishing a twinned (3 + 1)d structure from a 
higher-dimensional (3 + 2)d or (3 + 3)d case is the verifica-
tion whether the satellites q, qT2, …, qTn are accompanied 
by their combinations such as q ± qT2, …. When the com-
binations are present then this is a higher-dimensional 
case and not a twin. On the other hand, when these com-
binations are not observed, the crystal is either a twinned 
(3 + 1)d sample or a higher-dimensional case with very 
weak (unobserved) spots arising from the combinations. 

For such cases it is good to reconstruct the relevant sec-
tions through the reciprocal space using (if possible) an 
increased scaling factor because this procedure is more 
sensitive than a standard peak hunting and may help to 
discover very weak combined satellites. Another powerful 
method consists in projecting all peak positions into one 
unit cell (Figure 7).

As mentioned above, diffraction pattern of reticular 
twins can be indexed in a supercell and only non-standard 
systematic absent reflections can help to recognize that 
the sample is a twin. However, similar absences can 
be present in commensurately modulated structures 
due to the fact that satellites of higher order are unob-
served. Figure  8 shows an example of the high-pressure 

Fig. 7: (3 + 2)d modulated structure of melilite [30] with satellites 
arisen from combination of two q vectors. The presence of the 
combined satellites prove that the structure is not a twin of 
two (3 + 1)d modulated domains rotated by 90°, but a true two-
dimensionally modulated structure. (a) Idealized diffraction 
patterns in four unit cells viewed along c*: main reflection are 
black, satellites of q1 or q2 are gray, combined satellites are white. 
(b) Diffraction spots (one pixel representation) from peak hunting 
projected to one unit cell by the indexing tool of Jana2006. The 
cumulating of some spots in the middle of the plot and in the halves 
of unit cell axes is caused by the λ/2 effect of the classical sealed 
Mo tube with graphite monochromator.
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silicate Intermediate Phase-X K1.5Mg2Si2O7H0.5 [31]. Dif-
fraction pattern of this compound (Figure 8a) reveals the 
main spots conforming with the hexagonal space group 
P63/mcm, and satellite reflections, which can be described 
with two modulation vectors (α,α,0) and (-2α,α,0), 
α = 3/8, i.e. like the (3 + 2)d commensurately modulated 
structure [32]. However, the space group tests revealed 
that the hexagonal symmetry is systematically violated by 
the satellite reflections and that lowering of symmetry and 
introducing corresponding twinning is necessary. Finally, 
it was proven that the structure is orthorhombic, (3 + 1)d 
commensurately modulated, with a twinning by reticular 
merohedry defined as a rotation around the three-fold 
axis of the average structure (Figure 8b).

Another generalization of the twin approach can be 
made for multiphase crystals in which two or more phases 
with the closely related cell parameters are present in the 
same sample. Overlaps can exist between the diffraction 
patterns of the individual phases, and such patterns can 

be also twinned. The formula (2) can be rewritten to the 
form:
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where i is the twin domain. It differs from the equation (2) 
by the index j = 1, …, p (where p is the number of phases) 
which defines the phase connected with the ith domain. 
The twinning matrices define the relation between the 
cell parameters of both domains and their mutual orienta-
tions. In all cases studied by this method until now, the 
number p was equal 2 and the cell parameters were either 
identical or related by simple relationship such as c′ = 3c. 
Most of the applications were found either for mineral 
samples [33, 34] or for the results of not fully completed 
phase transition [35].

Implementation into Jana2006
Jana2006, in fact, can handle a general number of twin 
domains. However, a large number of twin domains is 
usually reserved for the Type I, where the number of corre-
sponding twinning matrices can be very large, especially 
for the group–subgroup transformation. On the other 
hand, working with a large number of twin domains is 
usually not feasible for the Type II and III twins because of 
the problems with diffraction overlaps that might be very 
severe. For this reason the diffractometer software usually 
does not tend to work with more than four twin domains 
during the twin data reduction.

Import of reflection files into Jana2006

For twins of the Type I, there is usually no indication of 
twinning at this point and we start the work exactly like in 
case of a non-twinned structure. All reflections from the 
input file are imported as for a regular non-twinned struc-
ture and there is no need to introduce twinning matrices 
during the data import.

On the other hand, reflection files of the Type II twins 
can be supplied either in one file using a common super-
cell or as a set of files individually processed for each twin 
domain. For both possibilities twinning matrices must be 
supplied during the import procedure. Moreover, for the 
supercell input the transformation matrix from the super-
cell to the first twin domain is required.

For the twin diffraction Type III Jana can import either 
an individual reflection file for each twin domain as in 
the previous case or (preferably) the hklf5 format which 

Fig. 8: Diffraction pattern of a (3 + 1)d commensurately modulated 
three-fold reticular twin [31] viewed along c* of the average structure. 
(a) Diffraction spots (one pixel representation) from peak hunting pro-
jected to one unit cell of the average structure by the indexing tool of 
Jana2006, and overlaid with the simulated diffraction pattern. (b) Dif-
fraction pattern simulated by the Reciprocal space viewer of Jana2006 
with twin domains distinguished like blue, red and green spots.
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contains unique information about overlaps of individual 
reflection. These overlaps cannot be completely predicted 
only on the basis of the cell parameters and twin matrices. 
In fact, the hklf5 format can be used for all types of twins. 
With the hklf5 format, twinning matrices are only needed 

for the data processing while in later stages of structure 
analysis the information about overlaps is known from the 
overlap keys.

Figure 9 illustrates possibilities for the import of the 
Type II twin data known from Figure 4. In case that the 

Fig. 9: Importing the Type II twin to Jana2006. (a) Importing of the first separately processed domain; (b) importing of the second sepa-
rately processed domain; (c) two separately processed domains in the data repository of Jana2006; (d) an alternative way – importing of 
data processed in the common supercell.
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data reduction was done separately for both twin domains, 
the two datasets can also be separately imported to the 
program (Figure 8a,b) and they finally appear as two lines 
in the data repository of Jana2006 (Figure 9c). A twinning 
matrix is required for this kind of the data import as well 
as an indication of which unit cell was used for the data 
reduction (“Data related to domain #”). During the import, 
the program offers discarding of the multiply imported 
reflections common to both domains because the data 
reduction of both domains is based on the same experi-
mental frames, and multiple import of identical reflec-
tions would bias the weighting scheme. Figure 9d shows 
the import wizard for the case when data were processed 
in the common supercell. In such a case only one dataset 
is imported and the required information is not only the 
twinning matrix but also the transformation matrix from 
the supercell to the final unit cell (in our case the trans-
formation from the four-fold monoclinic unit cell to the 
triclinic unit cell). The advantage of this second approach 
consists in the simplicity of the data reduction, where, 
e.g. the question of the data scale does not occur. On the 
other hand, the large supercell with many extinct reflec-
tions which cannot be described with standard extinction 
rules might generate too dense diffraction pattern which 
is unsuitable for data reduction.

Space group test

The program Jana2006 includes the procedure for per-
forming a symmetry test, which allows not only finding 
possible space groups but also allows recognizing the 
twinning for the twin diffraction Type I.

It starts by checking supercells of the higher lattice 
symmetry than the symmetry which can be associated with 
the input cell parameters, using a procedure analogical to 
[36]. For instance, it can find an orthorhombic supercell 
related to a monoclinic unit cell used for the data process-
ing. This is the first hint, which can help to find a hidden 
twinning not detected during data processing, because 
twinning of the Type II may occur in the supercell while the 
crystal structure may be described in the original unit cell. 
In the next step, the program tests internal R factors for all 
Laue point groups being compatible with the point sym-
metry of the selected cell. During this procedure the aver-
aging can be made (on request) according to the symmetry 
consideration described above in the section “Symmetry of 
the diffraction pattern of twins.” In the final step, we can 
select the symmetry to be either as high as the point sym-
metry of the lattice, or lower. In the case where the selected 
symmetry is lower than the point symmetry of the lattice, 

we can either introduce twinning following from the lower-
ing of the point symmetry, or continue to work in a lower 
space group without twinning being applied.

Group–subgroup transformations

Jana2006 contains a procedure for transformation of the 
actual space group used for the description of the studied 
structure into a subgroup. Not only symmetry but also 
atomic positions and the refinement reflection files are 
transformed so that the resulting structure can be imme-
diately refined. The set of subgroup generators can be 
chosen either interactively or by predefined maximal iso-
morphic subgroups as listed in the International Tables 
vol. A [37]. The procedure works in the following steps:
a)	 It generates new atom positions from the original 

atom, using the symmetry elements removed by low-
ering symmetry. All structural parameters are trans-
formed including those describing anharmonic ADPs, 
population parameters used for charge density stud-
ies and modulation parameters. For atoms located on 
the former (now removed) symmetry elements site 
occupancies are modified accordingly. Such a trans-
formed structure model still contains the symmetry 
of the higher symmetrical parent-structure but the 
explicitly defined symmetry is lower.

b)	 It starts an automatic procedure that processes reflec-
tions according to the new (lower) symmetry and pre-
pares the reflection file for a future refinement. Details 
are given in the general description of Jana2016 [15], 
where we have explained the difference between 
the reflection repository file and the file used in the 
refinement procedure.

c)	 In the case that the selected subgroup is in a non-
standard setting, the program offers an additional 
optional transformation to the standard setting. How-
ever, Jana2006 will work for any setting of the space 
group.

d)	 In the next step, the program offers an introduction of 
twinning. With G and H being the original and the target 
(lower) symmetry, twinning matrices can be selected 
as arbitrarily chosen representatives from each coset. 
The resulting structure model is a Type I twin, and this 
procedure is the main tool for testing various twinned 
models to get a satisfactory structure solution.

e)	 Optionally, the representative of each coset can be 
saved as a “local symmetry operation.” Users can use 
these operations to restrict any pair of atoms with sym-
metry, which is not present in the current space group 
symbol. Moreover, the program can automatically 

Brought to you by | Fyzikalni Ustav AV CR
Authenticated

Download Date | 10/17/16 10:44 AM



V. Petříček et al.: Crystallographic computing system Jana2006: solution and refinement of twinned structures      595

generate the corresponding “local symmetry opera-
tion” one for each pair generated at the paragraph a) so 
that the resulting structural parameters still obey the 
higher space group even during the refinement. Then 
we can remove such restrictions only for atoms really 
breaking the higher symmetry, which usually improve 
the convergence during the structure refinement.

Refinement of twinned structure

Introduction of twinning does not lead to special or 
serious problems during the refinement procedure. The 
only new parameters are the volume fractions as defined 
in the formula (2). This formula is also used to calculate 
twin intensities and their derivatives as needed for the 
refinement. Overlaps in the formula (2) for each reflec-
tion are either calculated from twinning matrices or 
read from the hklf5 file. Both methods work properly, 
but the first method is more flexible, especially when 
different models of twinning are tested. On the other 
hand, without the information provided by the file hklf5 
overlaps for the diffraction Type III cannot be reliably 
predicted.

To meet this contradiction, Jana2006 also contains an 
alternative method to predict overlaps, which is based on 
distances between reflections from different domain. Let 
the distance between two reflections, one from the ith and 
the second from the jth domain, be expressed as a differ-
ence in diffraction angles:

1 2arcsin
2

i j λ
∆θ

 −
 =  
h T h T

then we can define two constants, Δθmin, Δθmax and we can 
suppose that pairs of reflections laying in the interval (0, 
Δθmin) are fully overlapped and the pair of reflections laying 
in the interval (Δθmax, ∞) are fully separated. The reflec-
tions from the interval (Δθmin, Δθmax) are discarded from 
the refinement. The constants Δθmin, Δθmax must be deter-
mined by trial and error, considering that the discarding 
of large number of reflections is not good for refinement. 
The aim is to discard reflections biased by partial overlaps 
only. The advantage of the hklf5 format over this method 
is obvious because there are no reflections discarded and 
also no trial and error is further needed. On the other 
hand, this rather primitive method has been working sur-
prisingly well for many cases. Moreover, the hklf5 format 
may be incorrectly generated in some cases because even 
the diffractometer software can be incapable of treating 
some kinds of overlaps.

In the paragraph a), section “Group–subgroup trans-
formations,” we have mentioned that the transformed 
structure model still contains the symmetry of the higher 
symmetrical parent structure. Refinement of such a model 
in the lower symmetry would be singular. In order to over-
come this problem, we can use the option to randomize the 
starting atomic positions using a small random displace-
ment. This randomized procedure can be used selectively 
by keeping or deleting specific restrictions as generated 
during the group–subgroup transformation.

Examples

Recognition and refinement of a merohedric 
twin

Data: Pd3HgTe3, the synthetic analogue of temagamite [38] 
measured with a home lab X-ray diffractometer.

Unit cell: a = 7.8311(6) Å, b = 7.8311(6) Å, c = 17.2813(11) Å, 
α = 90°, β = 90°, γ = 120°, V = 917.81(12) Å3.

Steps of solution:
1.	 Data of this compound were processed in the above 

given hexagonal unit cell and imported into Jana2006. 
Superflip [28] indicated the non-centrosymmetric 
space group P6̅m2. The structure could be solved in 
this space group with the R(obs) value of 0.0766, how-
ever, some interatomic distances were too short. For 
this reason, merohedric twinning was considered.

2.	 Because the space group was non-centrosymmetric, 
inversion twinning was added manually using the 
interface shown in Figure  10a. Refinement of the 
inversion twin slightly decreased the R(obs) value to 
0.0713 and the twin volume fraction refined close to 
0.5 indicating a racemic mixture.

3.	 Jana2006 contains a tool for transformation of the 
complete structure to a subgroup. Figure 10b shows 
the list of possible non-isomorphic subgroups offered 
by the tool for the symmetry P6̅m2. From this list, the 
subgroup P6̅ led to the same troubles so that the next 
possibility, i.e. P3m1 was tested.

4.	 Figure 10c shows the tool after selecting the subgroup 
P3m1. The index of this subgroup is 2. Next page 
Figure 10d shows the symmetry operations contained 
in the coset decomposition; each of them could be 
selected as a twinning operation. In our case, “x y 
–z” was selected. Finally, Jana2006 transformed the 
structure model to the selected subgroup and inserted 
the twinning matrices. The structure model in P6̅m2 
was an inversion twin. Therefore, the structure model 
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in P3m1 was a four-fold merohedric twin because each 
of the two original twinning matrices was expanded 
by the new twinning operation:

1 2 3

4

1 0 0 1 0 0 1 0 0
0 1 0 , 0 1 0 , 0 1 0 ,
0 0 1 0 0 1 0 0 1

1 0 0
0 1 0
0 0 1

     −
     = = − =     
     − −     
 −
 = − 
  

T T T

T

5.	 The resulting structure model in P3m1 still kept the 
original higher symmetry which was used for expand-
ing the atomic positions. The refinement option 
“Randomize atomic coordinates” was used to break 
this former symmetry to enable structure refine-
ment. Refinement converged with R = 0.0522 and twin 
domains refined close to ¼. The structure model was 
now correct without unrealistically short distances.

Recognition and refinement of a simple 
reticular twin

Data: unpublished data set of Cu2Cl8(C8N4H20)·2H2O 
measured with a home lab X-ray diffractometer.

Unit cell: a = 12.3767(8) Å, b = 10.7802(5) Å, 
c = 16.8827(3) Å, β = 100.456(4)°, V = 2215.14(18) Å3.

Steps of the solution:
1.	 Data of this compound were processed in the above 

given monoclinic unit cell and imported to Jana2006.
2.	 The symmetry wizard of Jana2006 showed the possi-

bility to transform the monoclinic unit cell to a four-
fold orthorhombic supercell (Figure  11a) but there 
was no reason at this point to use it. In the next screen 
(Figure 11b), a very good Rint indicated the monoclinic 
symmetry (Figure 11b).

3.	 The structure was solved and refined. The resulting 
structure model was looking correct, however, refine-
ment was unstable and R(obs) value of the refinement 
was above 0.16.

4.	 The existence of the four-fold monoclinic supercell 
(Figure 11a) indicates that the sample could be a 
reticular twin. The latest versions of Jana2006 (since 
May 2016) has a tool “Search for reticular twinning,” 
which lists possible supercells (as in the symmetry 
wizard) and finds possible twinning in these super-
cells. The found twinning matrices are transformed to 
the current unit cell and introduced to the structure. 
Using this tool (Figure 11c), the following twinning 
matrix was found for our structure:

Fig. 10: Steps of solution of the merohedric twin of temagamite 
[35]. (a) Tools for manual definition of a twinning matrix; (b–d) tools 
for transformation of the structure model to a subgroup; (b) list of 
non-isomorphic subgroups of P6̅m2; (c) the transformation tool with 
selected P3m1; (d) the coset decomposition.
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1 0 0
0 1 0
0.5 0 1

 
 = − 
 − 

T

�This twinning matrix would take a simple form in the 
orthorhombic supercell, where it defines a 180° rota-
tion around a.

5.	 Using the twinning matrix for a monoclinic unit 
cell, refinement if P21/a converged with an excellent 
R(obs) 0.0359, and twin volume fractions refined as 
0.6964(12) and 0.3036(12).

We should note that the described process reveals the 
twinning matrix but the reflections belonging only to 
the second domain are missing because they were not 
present in the original data set. Although using the first 
domain together with the twinning matrix is sufficient for 
the structure solution, a purist’s approach would require 
going back to the experimental frames and making the 
data reduction in the supercell in order to obtain all avail-
able data.

The twinning matrix used for this refinement can also 
be obtained from Geminography [16], which can be called 
directly from Jana2006 as an external program.

Twinning in a commensurate structure

For commensurately modulated structures, a careful 
symmetry analysis is very important as the symmetry 
used in the superspace need not be fully reproduced in 
the 3d supercell [39]. A useful example is the structure of 
ephedrine originally described as a regular structure [40] 
with cell parameters a = 25.358 Å, b = 6.428 Å, c = 6.901 Å, 
space group P212121. Ephedrine is modulated below room 
temperature [41], with superspace group P212121(00γ)000 
and modulation vector (0,0,1/4). The structure could also 
be described in the supercell 1 × 1 × 4 but the superspace 
approach is preferable because of very weak satellites. 
From the superspace theory [39] it follows that there are 
several possibilities how the superspace symmetry is 
“projected” into the 3d supercell, depending on selection 
of so-called t-section through the superspace. Jana2006 
contains a tool (Figure 12) showing (for the given super-
space symmetry and q vector) possible t-sections and cor-
responding symmetry in the supercell.

For ephedrine, three non-equivalent supercell space 
groups are possible, two of them monoclinic and one 
triclinic. By the subsequent refinement it was found the 
most reasonable description is for the t-section t = 0 with 
corresponding supercell symmetry P21. Refinement with 

Fig. 11: Jana2006 screenshots illustrating steps of solution of the 
Type II twin in the section “Recognition and refinement of a simple 
reticular twin.” (a) Symmetry wizard indicating a four-fold supercell; 
(b) possible Laue symmetries for the monoclinic unit cell; (c) a tool 
for discovering a twinning by reticular merohedry.
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this t-section converged with R(obs) 0.0626, 0.0281, 0.055 
and 0.3351 for all, main, 1st order satellite and 2nd order sat-
ellite reflections, respectively. The fit for the second order 
satellites was very poor.

The supercell corresponding to the selected t-section 
is within experimental accuracy orthorhombic. For more 
complicated cases, we could verify metrics of the super-
cell by transforming the structure to the supercell with a 
tool available in Jana. With orthorhombic supercell and 
monoclinic space group, there was a chance for twinning 
by metric merohedry, using the twinning matrix

1 0 0
0 1 0
0 0 1

 −
 = − 
  

T

Indeed, the final refinement with two domains related 
by two-fold axis along the c axis converged with a signifi-
cantly better fit, especially for the second order satellites: 
R(obs) 0.0362, 0.0270, 0.0394 and 0.0797 for all, main, 1st 
order satellite and 2nd order satellite reflections, respectively.

So for commensurately modulated structures we have 
to always take into account the difference between super-
space and supercell symmetry as follows from different 
t-sections.

Examples on twinning in the Jana2006 
Cookbook

The Jana2006 Cookbook is available in http://jana.fzu.cz  
and contains step-by-step examples how to solve typical 

crystallographic problems. Data for the examples can also 
be downloaded. Several examples in the cookbook are 
devoted to twinning:

–– Example “3.1 AD3” explains solution and refinement 
of a simple pseudo-merohedric twin (Type I) with 
unequal twin volume fractions.

–– Example “3.2 PyNinit” explains solution and refine-
ment of a Type III twin and application of hklf5 file.

–– Example “3.3 CsLiSO4” shows solution of complicated 
Type II three-fold twin solved with help of the “Go to 
subgroup” tool.

–– Example “7.1 Ephedrine” shows in detail the solution 
of Ephedrine from the previous section.

–– Example “20.2 HfPdGHe” shows import of hklf5 file 
for a six-fold twin.

Conclusions
In this article we presented the knowledge necessary for 
efficient usage of the tools available in Jana2006 software 
for twinned structures. The terminology (Type I, II and 
III twins) is based on the much more detailed works of 
Nespolo and Ferraris [5], and it was intentionally simpli-
fied to keep it on the level necessary for practical structure 
determination of twins. We focused on the ways of how 
to recognize twins from the diffraction pattern, and how 
to work with typical twinned structures in Jana2006. We 
would like to draw attention to the part about symmetry 
of the diffraction pattern of twins, because the rules for 
merging symmetry equivalent reflections (see Figure 6) do 
not belong to the general knowledge of practical crystal-
lographers. We showed that twins are also an important 
topic in the fascinating field of modulated structures.
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